A Bayesian Discovery Procedure.
نویسندگان
چکیده
We discuss a Bayesian discovery procedure for multiple comparison problems. We show that under a coherent decision theoretic framework, a loss function combining true positive and false positive counts leads to a decision rule based on a threshold of the posterior probability of the alternative. Under a semi-parametric model for the data, we show that the Bayes rule can be approximated by the optimal discovery procedure (ODP), recently introduced by Storey (2007a). Improving the approximation leads us to a Bayesian discovery procedure (BDP), which exploits the multiple shrinkage in clusters implied by the assumed nonparametric model. We compare the BDP and the ODP estimates in a simple simulation study and in an assessment of differential gene expression based on microarray data from tumor samples. We extend the setting of the ODP by discussing modifications of the loss function that lead to different single thresholding statistics. Finally, we provide an application of the previous arguments to dependent (spatial) data.
منابع مشابه
A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملWavelet thresholding with bayesian false discovery rate control.
The false discovery rate (FDR) procedure has become a popular method for handling multiplicity in high-dimensional data. The definition of FDR has a natural Bayesian interpretation; it is the expected proportion of null hypotheses mistakenly rejected given a measure of evidence for their truth. In this article, we propose controlling the positive FDR using a Bayesian approach where the rejectio...
متن کاملBayesian Probabilities for Constraint-Based Causal Discovery
We target the problem of accuracy and robustness in causal inference from finite data sets. Our aim is to combine the inherent robustness of the Bayesian approach with the theoretical strength and clarity of constraint-based methods. We use a Bayesian score to obtain probability estimates on the input statements used in a constraint-based procedure. These are subsequently processed in decreasin...
متن کاملBayesian Logistic Regression Model Choice via Laplace-Metropolis Algorithm
Following a Bayesian statistical inference paradigm, we provide an alternative methodology for analyzing a multivariate logistic regression. We use a multivariate normal prior in the Bayesian analysis. We present a unique Bayes estimator associated with a prior which is admissible. The Bayes estimators of the coefficients of the model are obtained via MCMC methods. The proposed procedure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Statistical Society. Series B, Statistical methodology
دوره 71 5 شماره
صفحات -
تاریخ انتشار 2009